对于涉及连续的,半监督的学习以进行长期监测的应用程序,高维计算(HDC)作为机器学习范式非常有趣。但是,其准确性尚未与其他机器学习(ML)方法相提并论。允许快速设计空间探索以找到实用算法的框架对于使高清计算与其他ML技术竞争是必要的。为此,我们介绍了HDTORCH,这是一个开源的,基于Pytorch的HDC库,其中包含用于HyperVector操作的CUDA扩展名。我们通过使用经典和在线HD培训方法来分析四个HDC基准数据集,从而证明了HDTORCH的实用程序。我们为经典/在线HD的平均(训练)/推理速度分别为(111x/68x)/87x。此外,我们分析了不同的超参数对运行时和准确性的影响。最后,我们演示了HDTORCH如何实现对大型现实世界数据集应用的HDC策略的探索。我们对CHB-MIT EEG癫痫数据库进行了首个高清训练和推理分析。结果表明,在一部分数据子集上训练的典型方法不一定会推广到整个数据集,这是开发医疗可穿戴设备的未来HD模型时的重要因素。
translated by 谷歌翻译
癫痫患者的长期监测来自实时检测和可穿戴设备设计的工程角度呈现出具有挑战性的问题。它需要新的解决方案,允许连续无阻碍的监控和可靠的癫痫发作检测和预测。在癫痫发作期间的人,脑状态和时间实例中存在脑电图(EEG)模式的高可变性,而且在非扣押期间。这使得癫痫癫痫发作检测非常具有挑战性,特别是如果数据仅在癫痫发作和非癫痫标签下分组。超方(HD)计算,一种新型机器学习方法,作为一个有前途的工具。但是,当数据显示高级别的可变性时,它具有一定的限制。因此,在这项工作中,我们提出了一种基于多心高清计算的新型半监督学习方法。多质心方法允许有几个代表癫痫发作和非癫痫发作状态的原型向量,这导致与简单的2级HD模型相比显着提高了性能。此外,现实生活数据不平衡造成了额外的挑战,并且在数据的平衡子集上报告的性能可能被高估。因此,我们测试我们的多质心方法,具有三个不同的数据集平衡方案,显示较少平衡数据集的性能提升更高。更具体地,在不平衡的测试集上实现了高达14%的改进,而不是比癫痫发作数据更加不癫痫发布的10倍。与此同时,与平衡数据集相比,子类的总数不会显着增加。因此,所提出的多质心方法可以是实现具有现实数据余额或在线学习期间实现高性能的重要因素,癫痫发作不常见。
translated by 谷歌翻译
最近,变形金刚在各种视觉任务中表现出具有很大的表现。为了降低全球自我关注引起的二次计算复杂性,各种方法限制了本地区域内的注意范围以提高其效率。因此,单个注意层中的接收领域不够大,导致上下文建模不足。为了解决这个问题,我们提出了一种浅色的自我关注(PS-Legution),这在浅层形状的地区内进行自我关注。与全球自我关注相比,PS-Peponsion可以显着降低计算和内存成本。同时,它可以通过以前的本地自我关注机制捕获类似的计算复杂性下的更丰富的上下文信息。根据PS-Intension,我们开发了一个具有分层架构的一般视觉变压器骨干,名为苍白变压器,其达到83.4%,84.3%和84.9%的前1个精度,分别为22米,48米和85米对于224个Imagenet-1K分类,优于上一个视觉变压器骨干板。对于下游任务,我们的苍白变压器骨干在ADE20K语义分割和Coco对象检测和实例分割中,我们的苍白变压器骨干比最近最近的最新的克斯卡文变压器表现更好。代码将在https://github.com/br -dl/paddlevit上发布。
translated by 谷歌翻译
已经表明,面部识别系统(FRSS)容易受到变形攻击,但大多数研究侧重于基于地标的变形。生成变形的第二种方法使用生成的对抗性网络,这导致令人信服的真实面部图像,这几乎与基于地标的攻击一样挑战。我们提出了一种创建第三种不同类型的变形的方法,这具有更容易训练的优点。我们介绍了\ Texit的理论概念{最糟糕的情况变形},这是那些最具挑战性的FRS的变形。对于FRS的潜在空间中的一组图像和相应的嵌入,我们使用将空间倒波到图像空间的映射来生成近似这些最坏情况变形的图像。虽然所产生的图像尚未与其他变形一样挑战,但他们可以在未来的变形攻击检测(Mad)方法以及FRSS的弱点研究中提供有价值的信息。 MAD的方法需要在更多各种变形数据库上验证。我们提出的方法有助于实现这种变异。
translated by 谷歌翻译
神经线性模型(NLM)是深度贝叶斯模型,通过从数据中学习特征,然后对这些特征进行贝叶斯线性回归来产生预测的不确定性。尽管他们受欢迎,但很少有作品专注于有条理地评估这些模型的预测性不确定性。在这项工作中,我们证明了NLMS的传统培训程序急剧低估了分发输入的不确定性,因此它们不能在风险敏感的应用中暂时部署。我们确定了这种行为的基本原因,并提出了一种新的培训框架,捕获下游任务的有用预测不确定性。
translated by 谷歌翻译